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4-BIT RIPPLE CARRY ADDER USING PROPOSED  
ENERGY EFFICIENT SINGLE PHASE ADIABATIC 

LOGIC TECHNIQUE

ABSTRACT

This paper presents four bit ripple carry adder circuits based 
on low power adiabatic logic technique. The paper proposes 
a new design approach which is being derived from CMOS. 
A simulative investigation on the proposed circuit has been 
carried out in NI Multisim at 0.5μm  CMOS technology  
with L=0.5μm and W=1.25μm. The power consumption is 
compared with conventional CMOS and a popular standard 
2PASCL  technique which shows great improvement in 
power dissipations. 

Index Terms - Adiabatic logic, single phase, CMOS, energy 
recovery. Odd parity.

I. NTRODUCTION

“Adiabatic” is a Greek  word  and  used to describe 
the thermodynamic processes, which means no energy  
exchange with environment (i.e., no entropy enters or leaves 
the system) and therefore dissipated energy is almost zero. 
Adiabatic Switching is commonly used to minimize the 
energy loss during charging/dis-charging process. This is 
accomplished by using time-varying voltage source instead 
of fixed voltage supply. Trapezoidal or AC power supplies is 
used to initially charge the circuit during specific adiabatic 
phases and then discharge the circuit to recover the supplied 
charge. The principle of adiabatic switching can be best 
explained by contrasting it with the conventional dissipative 
switching technique.[1]

With the widespread use of mobile and wireless devices and 
the increase of clock and logic speeds in meeting the new 
performance requirements, energy efficiency has become a 
key design aspect in the field of integrated circuits (ICs) [1]. 
Hence, adiabatic logic circuit is a new promising approach, 
which has been originally developed for low power digital   
circuits [2].

In this paper, we compared the power consumption of the 

newly proposed adiabatic circuit with the counterpart 
conventional CMOS and a pre-existing popular adiabatic 
family known as two phase clocked static CMOS logic 
2PASCL [3]-[6]. The reference technique 2PASCL have 
good improvement in power consumption compared to other 
families such as QSERL, 2PADCL, ADCL, 1n1pSLN, 1n1p 
quqsi [4]. The proposed circuits show best energy saving. 
Comparison has shown a significant power saving to the 
extent of   in case of proposed techniques as compared to 
CMOS logic within   to   transition frequency range..

II. CMOS THEORY 

Power dissipation in conventional CMOS circuits primarily 
occurs during device switching. In conventional CMOS logic 
circuits (Fig.1), if an input is changed from 1 to 0 logic, the 
energy is transferred from the power supply to the output 
capacitor, the total charge Q=CLVDD is supply to the output 
node and the energy which is being drawn from the power 
supply is   CLVDD

2. But when the transition has ended, only half 
of the total energy is seen at the output load capacitor which 
is CLVDD

2 /2 and the other half is lost in PMOS networks (F).  
From VDD to   transition of the output node, energy stored 
in the load capacitance is dissipated in the NMOS network 
(/F) [7].

Fig.1: Conventional CMOS logic circuit with pull-up (F) 
and pull-down (/F) circuit [8].
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III. ADIABATIC LOGIC

Fig. 2: Adiabatic Charging

To calculate the energy consumed by charging a capacitance 
adiabatically, the equivalent circuit is shown in Fig. 2. Here, 
the load capacitance C is charged by a constant current 
source i(t). In conventional CMOS logic, constant voltage 
source is used to charge the load capacitance. Here, R is the 
on-resistance of PMOS network [9][10].

Therefore the current into the circuit can be determined by-
 

The energy for a charging event is calculated by integrating 
the power p(t) during the transition time T.

Since no energy is dissipated in the capacitor at one clock 
cycle. Therefore energy expression becomes-

 
 
 

During recovery process the same amount of energy is 
wasted. Therefore, the total energy dissipation over complete 
cycle is given as-                                                              
                                   

From the above expression the energy loss is inversely 
proportional to the switching time T. Here, the interesting 
thing is that the energy consumption is not only govern by 
the time period T but also the resistance R which is absence in 
the conventional CMOS. Thus if  2>>2RC then, the energy 
dissipation is lesser than the  conventional CMOS [8],[2].

IV. PROPOSED  ADIABATIC INVERTER

Fig. 3: Proposed Adiabatic Inverter

The basic inverter circuit is shown in the Fig. 3. It consists 
of a single phase power supply Power Clock (PCK) and four 
transistors in which two of them are PMOS and the other two 
are NMOS.

Fig.4: Waveforms of the Proposed Adiabatic Inverter

The circuit is being derived from traditional CMOS and 
is driven by a single power supply PCK. As seen from 
the above Fig.3, two more transistors are added to the 
conventional CMOS inverter in such a way that PMOS and 
NMOS are connected to pull-up and pull-down sides. The 
power clock frequency is set   a little bit higher than usual 
so as to get better output logic. During evaluation phase, the 
power supply PCK swings up and is followed by the output 
according to the logics and in the recovery phase PCK swings 
down and the voltage stored at the output capacitor are sent 
it back to the supply PCK as shown in the Fig.4. Hence the 
energy got recovered from the output node.

V. CIRCUIT IMPLEMENTATION

Adders are the basic building blocks of all arithmetic circuits; 
adders add two binary numbers and give out sum and carry as 
output. Since adders are needed to perform arithmetic, they 
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are an essential part of any computer. In order to cascade 
several one-bit adders to configure multiple bit adders there 
must be a provision to add the carry from the previous stage. 

Such an adder is called a full adder. It is possible to create a 
logical circuit using multiple full adders to add N-bit numbers. 
Each full adder inputs a Cin which is the Cout of the previous 
adder. This kind of adder is called a ripple-carry adder, since 
each carry bit “ripples” to the next full adder. Four full adders 
can be cascaded to configure a 4-bit adder. The arrangement is 
shown in fig.9. Boolean expression, circuits and corresponding 
simulated waveforms are  given below. Here Fig.5 & Fig.7 shows 
the full adder circuits for proposed  and 2PASCL techniques. 
Fig.6 & Fig.8 shows the simulated waveforms of proposed & 
2PASCL based designed full adder circuits. Proposed power 
efficient Four bit ripple carry adder has been configured by 
cascading 4-stages of proposed single-bit full adder circuit. The 
block diagram and it corresponding simulated waveforms are 
shown in Fig.9 & Fig.10.

Fig.5 Proposed Full Adder Circuit

Fig.6 Simulated Proposed Full Adder Circuit  Waveforms

Fig.7 2PASCL  Full Adder Circuit

Fig.8 Simulated 2PASCL Full Adder Circuit  Waveforms
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Fig.9 Configured proposed 4-Bit Ripple Carry Adder  
Block  by Cascading 4-Stages of   1-Bit Full Adder

Fig.10 Simulated Proposed  4-Bit Ripple Carry Adder Circuit Waveforms

VI. POWER CONSUMPTION ANALYSIS & 
COMPARISON

Estimation of power consumptions is carried out at 0.5μm 
technology with the W/L ratio of the PMOS and NMOS are 
same and taken as L=0.5μm and W=1.25μm. The simulation 
has been done in NI Multisim with VDD=3.3V and load 
capacitance =100fF at a frequency range of 200 to 800MHz. 
2PASCL and Proposed power efficient Adiabatic logic are 
investigated against the conventional CMOS logic for full 
adder circuits. Simulated power plots of the full adder 
circuits is shown in  Fig .11 

Fig.11 Simulated Power plot of  Full Adder  circuits

VII. CONCLUSION

In this paper, 4-bit ripple carry adder (RCA) circuit has been 
designed based on the proposed adiabatic logic technique & 
it corresponding simulated waveforms is being presented. 
The power consumption has also been calculated on a Full 
Adder circuits. The circuit diagrams and simulated output 
waveforms are presented and the power dissipations of the 
circuits are evaluated and compared with the counterpart 
conventional CMOS circuit.  From the above observations, it 
can be concluded that the proposed power efficient adiabatic 
logic circuits give superior performance and shows 87.5% 
energy saving at 400MHz  when compared to traditional 
methods. The proposed power efficient adiabatic logic 
circuit will be advantageous for ultra low energy computing 
applications.
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A REVIEW ON FRACTAL GEOMETRY FOR MULTIBAND 
ANTENNA  APPLICATION
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ABSTRACT

Fractal geometries can be implemented to minimize the 
antenna size compared to the normal antenna, where the self 
similar nature of different fractal geometry can be applicable 
for multi band application. The designed antenna is used not 
only to get size reduction, but also to get changed frequency. 
There are many techniques to improve the characteristic of 
antennas. In this review we mainly discussed on different 
structure iteration for better antenna application.

Key words: - Fractal antenna, Multi band, miniaturized 
structure.

I. NTRODUCTION

The word fractal means an object, which is indefinitely 
divided. Its Latin name is “fractus” that descends from the 
verb “frangere”, which means to break.  It is now more than 
a decade in which geometrical characteristics of fractals are 
being applied in the design of passive components in the RF 
and microwave domain. Fractal antenna design paradigm is 
still in its infancy. Fractal geometries in small antennas are 
the order associated with these geometries in contrast to an 
arbitrary meandering of random line segments (which may 
also result in small antennas). Benoit B. Mandelbrot [1] 
showed that many fractals existed in nature and that fractals 
could accurately model certain phenomena. Simulation and 
implementation for experimental study in identifying features 
of fractal shaped antennas that could impart increased 
flexibility in the design of newer generation wireless 
systems. For reducing size of resonating antenna fractal 
geometry is the most effective geometry. Different types of 
curves geometry like Koch curves[2], Murkowski curves[3] 
, FASS curves [4] the Koch dipole, Koch monopole, Koch 
loop, and Minkowski loop has been described for getting 
longer features within small and compact area. First ever 
usage of the terminology “Fractal Antenna” in published 
document [5], this article also state that fractal geometry 
was first used to design frequency selective surfaces. Cohen 
had reported properties of fractal based antenna in different 
research papers [6-11]. Traditionally, a wideband antenna 
in the low frequency wireless bands can only be achieved 

with heavily loaded wire antennas, which usually means 
different antennas, are needed for different frequency bands. 
Recent progress in the study of fractal antennas suggests 
some attractive solutions for using a single small antenna 
operating in several frequency bands [12]. Cohen [11] was 
the first to develop an antenna element using the concept of 
fractals. He demonstrated that the concept of fractal could 
be used to significantly reduce the antenna size without de 
generating the performance. Fractals have self-similarity, so 
fractal antenna elements or arrays also can achieve multiple 
frequency bands due to the self-similarity between different 
parts of the antenna. Antenna based on fractal geometry has 
carved out a niche of itself with its inclusion as separate 
chapters in newer editions of popular antenna texts [13, 14]. 
In this review we had focused on different types of structure 
called fractal, which are applicable for antenna application.
“Antenna will provide vital links to and from everything out there. 
The future of antennas reaches to the stars “….John D Kraus

II. FRACTAL DIMENSIONS

Properties, bandwidth and radiation characteristics can be 
changed by changing the size or shape. In fractal geometry 
there is different iteration from where it is possible to 
get different radiation pattern. Iterated Function System 
(IFS) algorithm [17] generates a fractal curve also a set of 
transformation forms the IFS for the generation of the fractal 
structures. Now consider N (δ) boxes, of linear size δ, are 
necessary to cover a set of points distributed in a plane, then 
the box dimension is defined as the power D in the equation 1,
                                       				    (1)

By taking log of both sides we can define the power for 
solving the iteration it can be written as
                                                        
                                                                                      (2)

III. THE KOCH SNOWFLAKE

Now consider a straight line P0Pl , where length is one, now 
by considering 1st iteration the length will be         , all 
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the line are equal size and shape (Fig.b) where pa, pb, pc are 
the three iteration points. After taking 2nd iteration length 
will be L=(4/3)2 . After taking 3rd iteration the length will 
be L=(4/3)3  so by changing only the power for taking the 
different no of iteration as a result for ∞ no of iteration length 
will be L=(4/3)  =    (Shown in figure e).

(a)
 

(b)
 

(c)
 

(d)
 

(e)

Figure 1: Different iteration (a) original, (b),(c),(d),(e) are 1st , 2nd, 3rd , 
and nth iteration.

Here discussed pattern is called The Koch snowflake, by 
taking six of these structures and put together to form the 
structure like infinite (figure f) but that the area it bounds is 
finite (indeed, it is contained in the white square) where each 
of the six sides of the Koch snowflake is self-similar if you 
take a small copy of it.

Figure f: Infinite iteration

But self-similarity is not what makes the Koch snowflake 
a fractal! (Contrary to a common misconception) After all, 
many common geometric objects exhibit self-similarity, 
consider, for example, the humble square.

(a)

(b)
 

(c)

Figure: 2 Different iteration by taking square (a),(b),(c)
are original square, dilate by factor 2, dilate by factor 3.

Now consider a small square and dilate by a factor of 2 
then it is possible to get 4 copies of the original. A square 
is self-similar, but it most certainly is not a fractal. Also it 
is possible to define different structure by using scale factor. 
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Consider scale factor is K, Let N be the number of copies 
of the original that is possible to get. By considering squire 
if can be define like K2=N or it can be expressed by using 
logarithmic term as LogKN=2. So as a whole for all the 
structure it can be written as LogKN. Now consider another 
shape triangle and taking scale factor (k) is 2, so no of copies 
of original (N) will be 4 and for that case logarithmic term 
will be LogKN=2

	         (a)                                             (b)

Figure 3: a (original triangle), b (scale factor 2)

Same iteration can also be considered by taking structure 
cube also (shown in figure 4). Where by considering scale 
factor 2 and number of copies of original (N) 8, the value of   
LogKN will be 3. LogKN tells that the dimensions of shape 
where the shape has to be self-similar. It turns out that this 
definition coincides with a much more general definition of 
dimension

Figure 4: Iteration of cube by scale

called the fractal dimension. Now let’s form Koch snowflake 
structure where by considering scale factor (k) is 3 and 
number of copies of original (N) is 4 so the   will be   which is 
1.261. So each side of the Koch snowflake is approximately 
1.261-dimensional that’s what makes the Koch snowflake a 
fractal – the fact that its dimension is not an integer. Even 
shapes which are not self-similar can be fractals.  The most 
famous of these is the Mandelbrot set.

Shape LogK N

 Square 2
Line segment 1
Triangle 2
Cube 3

Table 1: Changing of LogK N value by considering different shape

IV. THE SIERPINSKI CARPET

In this technique of calculation we define the antenna 
structure from taking square configuration. Start with a 
square of side length 3, with a square of side length 1 
removed from its center (Shown in figure). So the perimeter 
(P) will be [4(3)+4(1)] and the area (A) is [32-12].

(a)                                               (b)

(c)                                                 (d)

Figure 5: Different iteration from 1 to n

Again when we will consider this shape as consisting 
of eight small squares, each of side length 1 and 
from each small square, remove its central square.   
Then perimeters                              and area                              
So from n no of iteration the perimeter (P) will be  

And the area (A) will be 

So the Sierpinski carpet has an infinite perimeter-but it 
bounds a region with an area of zero and fractal dimension 
of the Sierpinski carpet will be . The Sierpinski carpet has 
a 3-dimensional analogue called the Menger sponge. Its 
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surface area is infinite, yet it bounds a region of zero volume. 
The fractal dimension of the Menger sponge is . Also it 
may be iterate by using different structure and different 
established methods.

V. SCOPE OF WORK 

A novel CPW feed complementary Sierpinski carpet planar 
monopole antenna can be investigated and analysed that 
has been performed using Real Coded Genetic Algorithm 
(RCGA) which can be accomplished using Particle Swarm 
Optimization (PSO). Only changing the shape of ground 
plane rather than perturbing the geometry itself Sierpinski 
carpet planar monopole antenna with CPW feed can be 
optimized and characterized for different better result. In 
fractal wire antenna domain the RCGA based optimization 
can be applied by linking Numerical Electromagnetic Code 
(NEC) with MATLAB™ this is well described by Derek 
Linden [15]. Also some studies on Sierpinski fractal loop 
antenna has been undertaken and reported in [16] on which 
we can do different studies.

VI. CONCLUSION

Wideband and low profile antennas are in great demand for 
both commercial and military applications.  The miniaturized 
structure of fractal antenna can be fabricated inside a small 
device and its multi-band and wideband antennas application 
are desirable in personal communication systems, small 
satellite communication terminals, and other wireless 
applications. Most fractals have infinite complexity and 
detail makes it possible to use fractal structure to design 
small size, low profile, and low weight antennas.
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ABSTRACT

Aggressive Packet Combining (APC) scheme is well 
established in literature for receiving correct packet in high 
error prone wireless link. In APC three copies of a packet are 
transmitted and receiver does bit wise majority decision to 
get correct copy. Major research challenge of the APC is that 
in APC the minimum average number of times a packet needs 
to be transferred from a source to a destination for successful 
reception of the packet is 3, we propose a new protocol of 
transmission where average number of transmission can be 
reduced and new protocol studied /reported mathematically 
and experimentally.

Keywords : Packet Combining Scheme, Conventional 
Aggressive Packet Combining Scheme (CAPC), Throughput, 
Bit error rate, sequential mode.

I. NTRODUCTION

In order to combat errors in computer/ data communication 
networks, ARQ (Automatic Repeat Request) techniques 
[1-5] with various modifications as applicable to in various 
communication environments are used. Leung [7] proposed 
an idea of Aggressive Packet Combining scheme (APC) for 
error control in wireless networks with the basic objective of 
fast error control in relatively higher noisy wireless networks. 
APC is well established and studied elsewhere [3-10].Several 
modifications of APC are also reported elsewhere [2-13]. 
The modifications are due to increasing throughput, tackling 
various error syndromes and enhancing fast correction. In 
APC and/ or modified APCs, two or more copies of the 
packets are transmitted. Copies received by the receiver 
either error free or erroneous are used in receiver to correct 
errors by applying Packet Combining schemes differently in 
different situations. However in original APC, if an error at 
same locations of erroneous packets, the application of the 
majority logic as an original APC fails to correct the error. 

To address the stated problem of APC we propose two 
new protocols of APC. Analytical results establish that the 
proposed new schemes are superior to original APC. 

II. REVIEW OF PACKET COMBING SCHEME

Chakrabotry [11] suggested a very simple and elegant 
technique known as packet combining scheme (PC) where 
the receiver will correct limited error, one or two bit error, 
from the received erroneous copies. As per Chakraborty’s 
proposal:

It is assumed that an original packet “10101010” is to be 
transmitted between a sender and a receiver. The packet 
erroneously received by the receiver is “00101010”. The 
receiver requests for retransmission of the packet and keeps 
the copy that has been received erroneously as well. The 
transmitter retransmits the packet, but again the packet 
is received by the receiver erroneously as “11101010”. 
Chakraborty suggested that the receiver can correct the error 
by using two erroneous copies. After making a bit wise XOR 
operation between erroneous copies, the receiver can locate 
the error position. The operation can be identified by an 
example given below:

First erroneous copy	 =        00101010
Second erroneous copy	 =        11101010
XOR			             11000000

The error locations are identified as first and/or second bit 
from left. Chakraborty suggested that the receiver can apply 
the brute method to correct error by changing received “1” 
to “0” or vice versa on the received copies followed by the 
application of error decoding method in use. In the example 
the average number of brute application will be ½ and in 
general 2n-1 if n bits are found in error. Several modifications 
of PC have been studied elsewhere [12-13] by Bhunia’s.
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III. REVIEW OF CONVENTIONAL APC

Aggressive packet combining scheme is a modification of 
MjPc (Majority Packet Combining) [14].To illustrate APC 
it is assumed that an original packet 10101010 is transmitted 
between a sender and a receiver. In Aggressive Packet 
combining Scheme (APC) the three copies of packet are 
sent for each packet between a source and a destination. The 
majority logic is applied bit to bit on three copies of packet. 
In table: (1) we have shown different possibilities of APC. In 
Case (1) there is no error in transmitted three copies. In Case 
(2) receiver receives two copies of correct packet and one 
copy with an error, so the correction is possible by majority 
logic. In Case (3) and Case (4) errors are present in two or 
more copies in which case correction is not possible.

Table: 1: Different cases of Aggressive 
Packet Combining Scheme 

Case 1 Case 2 Case 3 Case 4

Copy-1= 
10101010 
Copy -2= 
10101010 
Copy-3= 
10101010

Copy-1= 
00101010 
Copy -2= 
10101010 
Copy-3= 
10101010

Copy-1= 
00101010 
Copy -2= 
00101010 
Copy-3= 
10101010

Copy-1= 
00101010 
Copy -2= 
00101010 
Copy-3= 
00101010

Correction 
Probability  is 

(1-P3)

Correction 
Probability  is 

(1-P2) P

Correction 
Probability  is 

(1-P) P2

Correction 
Probability  is 

(P3)

Correction not 
required.

Correction 
possible

Correction 
not possible

Correction 
not possible

IV. NEW BASIC IDEA

In APC the minimum average number of times a packet needs 
to be transferred from a source to a destination for successful 
reception of the packet is 3. To increase the throughput, 
we like to propose a variation to the limitation of APC. A 
protocol is illustrated below up to two bits error:

	 Step I: The sender will transmit two copies of the packet  
	 to the receiver first. Then receiver will do bit wise XOR  
	 with these two copies. As discussed in Packet Combining  
	 Scheme and if error locations are identified (up to two  
	 bits) then perform Step II otherwise accepts these copies  
	 as correct copy and send positive acknowledgement to  
	 the sender.

	 Step II: Through a secure feedback path receiver will  
	 transmit identified erroneous bit locations to the sender.

	 Step III: Sender likes to transmit correct bit value from  
	 original copy up to four times for each single bit error.

	 Step IV: Lastly receiver will generate original bit from  
	 transmitted bits to generate correct copy.

The scheme is illustrated properly by taking different 
examples; suppose original copy is “10101010” and 
receiver receives two erroneous copies as “00101010” and 
“10101110” (error places marked as boldfaces).

1st copy: 00101010
2nd copy: 10101110
------------------------------
XOR      10000100

From above XOR operation we can easily identify two 
erroneous bits are 1st and 6th from left. Now receiver will 
transmit this erroneous bit’s information to the sender 
through a secure path then sender will send “1111” and 
“0000” respectively for 1st and 6th bit locations, by these 
values receiver can easily generate original copy.

Suppose another original copy is “11000101”and receiver 
receives two copies as “11000111” and “11000101”.

1st copy: 11000111
2nd copy: 11000101
----------------------------
XOR      0000010

So in this case erroneous bit is in 7th bit from left. After 
getting this information from the receiver, sender sends 
“0000” to the receiver for the generation of correct copy.

V. ANALYSIS

Average number of packet transmission in conventional 
APC to get correct copy is 3 but in proposed scheme average 
number of packet transmission is;

M = 2 + [ nC2 . α2 (1-α)n-2] * 2 , where α is the bit error rate 
and n is total number of bits. Fig (1) is drawn with different 
values of n ( e.g: 8,16,32,48) in respect of different BER( 
10-1 to 10-3). And can be strongly inferred that proposed 
scheme is quite superior to APC.

Also we have conducted an experiment with 8 bit data 
(0000000 to 11111111) with different one bit and two bit error 
vectors and we have got 100% error correcting capability in 
proposed scheme.
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Fig: (1) Comparison of APC with proposed scheme. 

Fig: (2) Partial simulation result.

VI. CONCLUSIONS

In this paper, a new scheme of APC are proposed & 
studied. These schemes provide better correction capability. 
Simulation study will be made in future research.
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ABSTRACT

In this paper, we present an efficient numerical method 
to solve fractional integro-differential equation based on 
the differential transform method of Odibat et al. [1]. The 
proposed method is applied to solve Caputo fractional 
integro-differential equation combined with initial 
conditions. Numerical examples are investigated to illustrate 
the effectiveness of the generalization.

Keywords - erivatives and integrals; fractional differential 
equation; differential transform method.

I. NTRODUCTION

In the past decade, both mathematicians and physicists have 
devoted considerable efforts to study various schemes for 
the solution of linear and nonlinear differential equations 
of fractional order. These schemes can be broadly classified 
into two classes viz. analytical and numerical. Many models 
considering the fractional differential operators are described 
in [6, 9, 13, 14]. More recent applications of linear and 
nonlinear multi-order fractional differential equations can be 
found in [1]. The numerical solution of fractional differential 
equations has been a standard topic for the applied problem. 
According to the authors [2, 3, 7], the numerical schemes can 
be further divided into two groups: the solution is approximated 
over the entire domain using approximating functions such as 
polynomials and orthogonal functions; and the entire domain 
is divided into several small domains like in a finite element 
technique, and the solution is obtained for variables.

In a series of papers [4, 11] the authors have been solved 
linear and nonlinear differential equations of fractional order. 

This method is based on the differential transform method 
and generalized Taylor’s formula [11]. Further, Hwang 
et al. [12] generalized the differential transform method 
and applied the method to study the problem arises in the 
nonlinear optimal control. In the present paper, we extend 
a semi-numerical method based on the one-dimensional 
generalization of differential transform method to the 
integro-differential equation of fractional order. In many 
applications, the differential equations of fractional order 
in Caputo’s sense provide more accurate models of system 
under consideration.

II. REVIEW ON FRACTIONAL OPERATORS

Fractional calculus is a generalization of integration and 
differentiation of fundamental operator to a fractional, or 
non-integer order. We first introduce some definitions and 
properties of the fractional calculus [5].
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The following result is very useful for solving differential 

equation of fractional order [10, 1].  
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The generalized Taylor's formula that involves the Caputo’s 

fractional derivative was presented in [11, 13]. Before 

introducing the generalized Taylor's formula we begin with 

the generalized mean value theorem of Odibat et al. [11]. 
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When 1� � , the generalized mean value theorem reduces to 

the classical mean value theorem. We need the following 
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The above proposition would be the initial point to construct the 

power series of a sufficiently well behaved function ( )f t . 
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In the case of 1� � , the generalized Taylor's formula in 

Caputo’s sense (1.9) reduces to the classical Taylor’s formula. 
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f aR t t a

N

�
� �

�

�
��� �

� � �

( 1) )(( 1)(( )()(� )()()(
 (1.13) 

Hence, the accuracy of the ( )NP t�
 increases when we choose 

large N  and decreases as the value of t  moves away from 

the center a . Thus, we must choose N  large enough so that 

the error does not exceed a specified bound. For more details 

see [11]. 

III. GENERALIZED DIFFERENTIAL 
TRANSFORM METHOD 

The differential transformation, like the well-known integral 

transformations (Fourier and Laplace transformation), is a 

linear operator that transforms a function from the original 

time and/or space domain into a transformed domain in order 

to minimize the differential calculations. But the differential 

transformation is different from the integral transformations 

in that the images of a function are determined by differential 

operations instead of integral operations [12]. 

In this section, we consider the fractional nonlinear integro-

differential equation  

1 2 ( )( ) ( )( ) ( ) ( , ( ), ( ), ( ), , ( ),ky t f t y t y t y t y t�� �� � ( )
( )y, ((

( )
 

1 2 ( )( ) ( )
( ), ( ), , ( )),ky t y t y t�� � �� � ( )

(
( )y, ((
( )

           (2.1) 

Together with the initial condition 

0(0) ,y y� � ,                                    (2.2) 

Where 
( )

( ) : ( )( )j jC
ay t y t� �
�� )( )a y)(a
�
� ,

( )
( ) : ( )( ), 1,2, ,j j

ay t y t j k� ��
�� � k,a y j)( ),)( ),a )( ))( )
�
� )( ) and 

0 j j� � � �� � � � ,  1,2, ,j k� k, ; 1m m�� � m� , 

m� . 

The existence and uniqueness conditions for the nonlinear 

fractional integro-differential equation (2.1) and (2.2) were 

found in the recent paper of Matter [14]. 

 

The Taylor's series method is computationally takes long time 

for large order and requires symbolic computation of the 

necessary derivatives of the data function. The generalized 

Taylor's series method was well addressed in [11, 13]. 

 

The differential transform method was first introduced by 

Zhou [15], who solved linear and nonlinear initial value 

problems arising in electric circuit analysis. Generally, it was 

an iterative process to obtain analytical Taylor's series 

solution in the forms of a polynomial, which was different 

from the traditional higher order Taylor's series method. First 

we define the generalized differential transform of the k -th 

derivative of function ( )f t  as follows: 

( )1
( ) ( )

( 1)

kF k y f t
k

�
� �

� �� � �� �
 (2.3)             

where 
( )ky �

 denotes the sequential fractional Caputo’s 

derivative and the inverse differential transform of ( )F k�  is 

defined as follows: 

0

0

( ) ( )( )k

k
f t F k t t �

�

�

�

� ��  (2.4) 

It can easily show that (2.4) is the inverse of the generalized 

differential transform (2.3). In real applications, by using 

Theorem 1.10 we will approximate the function ( )f t  by the 

finite series 

0

0

( ) ( )( )
n

k

k
f t F k t t �

�
�

� ��  (2.5) 

For the case 1� � , the generalized differential transform 

(2.3) reduces to the classical differential transform of Zhou 

[15]. Equation (2.5) implies that the 0

1

( )( )k

k n
F k t t �
�

�

� �

��  

is negligibly small. In fact, n  is decided by the convergence 

of natural frequency in this study. Some useful properties of 

generalized differential transform are introduced below: 

 
Theorem 2.1. If ( ) ( ) ( )f t g t h t� � , then 

( ) ( ) ( )F k G k H k� � �� � . 

Theorem 2.2. If ( ) ( )f t cg t� , then ( ) ( )F k cG k� �� , 

where c  is a constant. 

 
Theorem 2.3. If ( ) ( ) ( )f t g t h t� , then 

0

( ) ( ) ( )
k

j
F k G j H k j� � �

�

� �� . 
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Theorem 2.4. If 
1

( ) ( )
n

j
j

f t g t
�

�� , 1,2, , ,j n� ,,  then  

1 3 2

1 2 2 1

1 1 2 2 1

0 0 0 0
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k k kk

k k k k
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3 2
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( (( (1 1 2 2 11)� �1 11 11 11( (( ()����  

( 1) 1 2 1( ) ( ).n n n n nG k k G k k� �� � � �� �        2.6) 

Theorem 2.5. If 
( )( ) ( )f t g t�� , then 

(( 1) 1)
( ) ( 1)

( 1)

kF k G k
k� �

�
�

� � �
� �

� �
, 

where 
( ) ( )g t�

 is the Caputo’s fractional derivative of ( )g t . 

Theorem 2.6. If 0( ) ( )f t t t �� � , n� �� , n� , then 

( ) ( / )F k k� � � �� � , 

where � �
1 if 0,

0 if 0.

k
k

k
�

��
� � ��

 

Theorem 2.7. If 
( )( ) ( )f t g t�� , 1m m�� � m�  and the 

function ( )g t  satisfies the conditions of Theorem 1.4, then  

( 1)
( ) ( / ).
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kF k G k
k� �
� � � �
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� � �
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Theorem 2.8. If 
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where 1/k �1/k � . 
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0

( ) ( ) ( )
t

t
f t g t h t dt� � , then  

1

1 1

1/ 1

1
( ) ( 1/ ) ( )

k

k
F k H k G k k

k� � �
�

�
��

� � �� , 

where 1/k �1/k � . 
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0
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where 1/k �1/k � . 

Theorem 2.12. If 
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where nk k� . 

Proof. Let 
( )

( ) ( )j
j jh t g t�� , 1,2, ,j n� n,  and ( )jH k�  

be the transform of ( )jh t . Then by using Theorem 2.4, we 

have 

1 3 2

1 2 2 1

1 1 2 2 1

0 0 0 0
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                 ( 1) 1 2 1( ) ( )n n n n nH k k H k k� �� � � �� �( )H ( 1) (� ( 1)1)( 1)1)1) . 

Under the conditions of Theorem 1.4 and using Theorem 2.5, 

we finally arrive at the required result. 

Theorem 2.13. If 
( )( ) ( )f t g t��� , 1m m�� � m� ,

m�  such that 
�
�

�� �  and the function ( )g t  satisfies 

the conditions of Theorem 1.4, then  
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where 1� �� � , and 
( ) ( )g t��

 represent the sequential 

Riemann-Liouville fractional integral operator defined in (1.1). 

 
Proof. Using the fractional power series expansion, we have 
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Starting the index of the series from /k � �� , 
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Now for /k � ��  and by the definition of transform we get 

the required result. 
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Proof. Let ( ) ( ) ( )f t g t h t� , where 
( )

1
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n

i
i

g t g t�

�

�� , 

( )

1

( ) ( )j
m

j
j

h t h t��

�

��  and ( )G k� , ( )H k� be the 

transform of ( )g t , ( )h t  respectively. Then by using 

Theorem 2.3, we have 

0

( ) ( ). ( )
k

l
F k G k H k l� � �

�

� ��  

Under the conditions of Theorem 1.4 and using Theorem 

2.12-2.13, we finally arrive at the required result. 

 
IV. NUMERICAL EXAMPLES 

Example 3.1. Let us consider the linear fractional integro-

differential equation 
3.2 3.6 4.1

(0.8) (0.4) ( 0.1)24 48 120
( ) 2 5 ,

(4.2) (4.6
 

) (5.1)

t t t
y t y y �� � � � �

� � �
                      (3.1) 

with (0) 0y � . 

Setting 0.1� �  and using the Theorems 2.7 and 2.13 the 

equation (3.1) transforms to the following recurrence relation

� � (0.1 1) (0.1 1.4)
8 ( ) 2 ( 4)

(0.1 1.8) (0.1 1)

k k
Y k F k Y k

k k
� � � �

� � � �
� � � �

�
�
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(0.1 0.9)
5 ( 1)

(0.1 1)

k Y k
k

�� �
� � �

� � �
                                 (3.2) 

24 48
( ) ( 32) ( 36)

(4.2) (4 6)
 

.
F k k k� �� � � �

� �
 

120
( 41)

(5.1)
k�� �

�
                    (3.3) 

Again by using (2.3) and initial condition, we get 

( ) 0, 0,1, ,7.Y k k� � ,7.         (3.4) 

Equation (3.2) and (3.3) are utilized to evaluate ( )Y k  up to 

40N �  terms using Matlab and the numerical results and 

graph are presented in Table-1 and Figure-1 respectively. The 

exact solution to the problem (3.1) is
4y t� . 

t Exact GDTM Error
0 0 0 0

0.1 1.658E-3 1.658E-3 0
0.2 8.755E-3 8.757E-3 2.17E-20
0.3 2.317E-2 2.317E-2 0
0.4 4.621E-2 4.627E-2 6.939E-17
0.5 7.894E-2 7.901E-2 6.939E-17
0.6 1.222E-1 1.228E-1 5.551E-16
0.7 1.770E-1 1.775E-1 5.551E-16
0.8 2.434E-1 2.494E-1 5.551E-16
0.9 3.235E-1 3.602E-1 3.663E-15

Table 1

Figure-1
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Example 3.2. Let us consider the linear fractional integro-

differential equation 

(0.5) ( )

0
( ) (sin cos )) ( ) ( ) sin ( , )

tpy t t t y t f t t x y x dx�� � � � �
                                                                (3.5) 

with (0) 0y �  and  

1.5 0.5

22
( ) (2 3cos sin cos ).

(2.5) (1.5)
 
t t

f t t t t t t t� � � � � �
� �

                                                          (3.6) 
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Figure-2

V. CONCLUSION

There were a few methods suggested to study the fractional 
integro-differential equations. The main concern of this 
article is to construct a numerical solution of the integro-
differential equation of fractional order describe in Matter 
[14]. This generalized differential transform method is 

applicable to either initial or boundary value problems of 
fractional integro-differential equation which may be linear 
or nonlinear. It also possible to solve a system of fractional 
integro-differential equations by using this generalized 
method. It provides the solution in terms of convergent 
series with easily computable components and accuracy 
is improved by increasing number of terms considered. 
We have used the Math lab package to calculate the series 
obtained from the generalized differential transform method.
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where ( )C k  and ( )S k  represents the generalized 

differential transform for cost  and sin t  respectively. Again 

by using (2.3) and the initial condition we get 

( ) 0, 0,1, ,4.Y k k� � , 4.   (3.9) 

The exact solution to the problem (3.5) is
2y t t� � . For 

0,0.2,0.4p �  the graph are presented in Figure-2. 
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DESIGN & ANALYSIS OF N-BIT  COMPARATOR 
BASED ON LOW  POWER  ADIABATIC

LOGIC  TECHNIQUE

ABSTRACT

This paper presents N-Bit Magnitude Comparator by 
Cascading 1-Bit Complex Cascadable Comparator based 
on low power adiabatic logic technique.  At  0.3µm  CMOS 
technology  with L=0.3µm and W=0.75µm,  the power 
consumptions is compared graphically  at various frequencies 
with the counterpart conventional CMOS circuit  using NI-
Multisim. Two popular partially adiabatic circuits such as 
ECRL and PFAL  are used as the reference circuits since 
they have got good improvement in power consumptions and 
mostly used as the reference circuit.

Index Terms - A.C power supply, energy recovery, adiabatic 
switching, Boolean expressions, power dissipations,    
waveforms and equivalent circuits.

I. NTRODUCTION

“Adiabatic” is a Greek  word  and  used to describe the 
thermodynamic processes.  which means no energy  is 
exchange with environment (i.e no entropy enters or leaves 
the system) and therefore dissipated energy is almost zero.

Hence in adiabatic circuit the energy loss is being optimized. 
But the functional speed of the circuit is compromised since 
a.c  or trapezoidal  voltage source is used as inputs as well 
as supply voltage. In order to increase switching speed and 
decrease the area occupancy, the practical circuit is usually 
made up of an adiabatic component and a non-adiabatic 
component [1-3].

In conventional CMOS logic circuits (Fig.1), if an input is 
changed  from 1 to 0 logic, the energy is transferred from 
the power supply to the output capacitor, the total charge   
is supply to the output node and the energy which is being 
drawn from the power supply  is    . But when the transition 
has ended, only half of the total energy is seen at  the output 
load capacitor which is    and the other half  is lost in PMOS 
networks(F). From VDD to 0 transition of the output node, 

energy stored in the load capacitance is dissipated in the 
NMOS network (/F) [8].

Adiabatic logic circuits reduce the energy dissipation during 
switching process, and reuse the some of energy by recycling 
from the load capacitance [ 2]. 

Fig.1: Conventional CMOS logic circuit with pull-up(F) 
and pull-down(/F)  circuit [3].

II. CHARGING PROCESS IN
ADIABATIC LOGIC CIRCUIT 

Fig.2: Adiabatic Charging

To calculate the energy consumed by charging a capacitance 
adiabatically, the equivalent circuit in Fig. 2 for an adiabatic 
gate is used. Here, the load capacitance C is charged by a 
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constant current source. In conventional CMOS logic  constant 
voltage source is used to charge the load capacitance.
 
Here, R is the on-resistance of PMOS network [9].

Therefore the current into the circuit can be determined by-

The energy for a charging event is calculated by integrating 
the power p(t) during the transition time T :

       Or

Since no energy is dissipated in the capacitor at one clock 
cycle. Therefore energy expression becomes

  Or

During recovery process the same amount of energy is 
wasted, Therefore the total energy dissipation over complete 
cycle is given as       

From the above expression it can be concluded that the 
energy loss is inversely proportional to the switching time 
T. Here the interesting fact is that the energy consumption is 
not only govern by the time period T but also the resistance 
R  which is absence in the conventional CMOS. Thus if  
T>>2RC then, the energy dissipation is lesser than the  
conventional CMOS [3, 10].

III. REFERENCE FAMILY USED

Practical adiabatic families can be classified as either partially 
adiabatic or fully adiabatic [11]. In a partially adiabatic circuit, 
some charge is allowed to be transferred to the ground, while in 
a fully adiabatic circuit, all the charge on the load capacitance 
is recovered by the power supply. Fully adiabatic circuits face  
problems with respect to the operating speed and the inputs 
power clock synchronization [1].

There are  many adiabatic logic design techniques that are 
given in the literature. But here two of them are chosen, 
ECRL and PFAL which shows the good improvement in 
energy dissipation and are mostly used as reference in new 
logic families for less energy dissipation [2].

( )( ) DDCVCdv ti t
dt T

= =

0 0

( ) ( ). ( )
T T

E p t dt v t i t dt= =∫ ∫

0

( ( ) ( )). ( )
T

R cE V t V t i t dt= +∫

2
2

2
0

T
DDVE RC
T

= ∫ 2
DD

RCE CV
T

=

22
DD

RCE CV
T

=

A. Efficient Charge Recovery Logic ( ECRL)
It consists of two cross-coupled transistors M1 and M2 and 
two NMOS transistors in the N-functional blocks for the 
ECRL adiabatic logic block [12].

An AC power supply pwr is used for ECRL gates, so as to 
recover and reuse the supplied energy. Both out and /out are 
generated so that the power clock generator can always drive a 
constant load capacitance independent of the input signal [1]. 

Assuming ‘in’ is high and ‘/in’ is low, at the beginning of a 
cycle, when the clock ‘pwr’ rises, ‘out’  remains at a ground 
level, because ‘in ’ turn on M2. ‘/out’ follows ‘pwr through 
M1. When ‘pwr is high, the outputs hold valid logic levels. 
These values are used in the next stage for evaluation. 
While ‘pwr’ falls down to a ground level, charge on ‘/out’ 
returns its energy to ‘pwr’. Thus, the clock acts both as a 
clock and power supply [12].

Fig.3: Basic model of ECRL circuit

B. Positive Feedback Adiabatic Logic (PFAL)
The partial energy recovery circuit structure so called 
Positive Feedback Adiabatic Logic (PFAL) has good 
robustness against technological parameter variations [8].

The core of all the PFAL gates is an adiabatic amplifier, a 
latch made by the two PMOS: M1-M2 and two NMOS: 
M3-M4, that avoids a logic level degradation on the 
output nodes out and /out. The two n-trees realize the logic 
functions. This logic family also generates both positive 
and negative outputs. The functional blocks are in parallel 
with the PMOSFETs of the adiabatic amplifier and form 
a transmission gate. The two n-trees realize the logic 
functions. This logic family also generates both positive 
and negative outputs [13].

Fig.4: Basic model of PFAL circuit
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IV. CIRCUIT IMPLEMENTATION

A. Formula and logical expression of the circuits
Comparators are designed to compare the magnitude of two 
bit binary numbers and indicate whether one is greater than, 
less than or equal to the other. An N-Bit comparator would 
accept N-Bit numbers and generate three outputs. The truth 
table of such 1-bit cascadable complex comparator is shown 
in Table 1. Here  ai and bi  are the ist stage of the inputs 
under comparison and xi, yi & zi are the previous stage of 
the outputs. The next stage of the outputs are denoted by 
xi+1, yi+1 and zi+1. The logical formulas for the next stage 
outputs are obtained from karnaugh maps [4].

Table1: Truth table of Cascadable
1-Bit Complex Comparator 

S/N ai bi xi yi zi xi+1 yi+1 zi+1

0 0 0 0 0 0 - - -

1 0 0 0 0 1 0 0 1

2 0 0 0 1 0 0 1 1

3 0 0 0 1 1 - - -

4 0 0 1 0 0 1 0 0

5 0 0 1 0 1 - - -

6 0 0 1 1 0 - - -

7 0 0 1 1 1 - - -

8 0 1 0 0 0 - - -

9 0 1 0 0 1 0 0 1

10 0 1 0 1 0 0 0 1

11 0 1 0 1 1 - - -

12 0 1 1 0 0 0 0 1

13 0 1 1 0 1 - - -

14 0 1 1 1 0 - - -

15 0 1 1 1 1 - - -

16 1 0 0 0 0 - - -

17 1 0 0 0 1 1 0 0

18 1 0 0 1 0 1 0 0

19 1 0 0 1 1 - - -

20 1 0 1 0 0 1 0 0

21 1 0 1 0 1 - - -

22 1 0 1 1 0 - - -

23 1 0 1 1 1 - - -

24 1 1 0 0 0 - - -

25 1 1 0 0 1 0 0 1

26 1 1 0 1 0 0 1 0

27 1 1 0 1 1 - - -

28 1 1 1 0 0 1 0 0

29 1 1 1 0 1 - - -

30 1 1 1 1 0 - - -

31 1 1 1 1 1 - - -

Logical expression:

Fig.5: ECRL Cascadable 1-Bit Complex  Comparator Circuit

Fig.6:PFAL Cascadable 1-Bit Complex Comparator Circuit

1( )i i i i i i ix A B a b a x b x+ > = + +

1( )i i i i i i iy A B a b y a b y+ = = +

1( )i i i i i i iz A B a b a z b z+ < = + +
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Fig.7:   PFAL  4-Bit Magnitude Comparator Configured Using
four  Stages of Cascadable 1-Bit Complex Comparator.

B. Simulation Results
Simulations  has been carried out in NI-Multisim. Fig.5 and 
Fig.6 shows ECRL and PFAL 1-Bit Cascadable  Complex 
Comparator circuits. Fig.7 shows PFAL 4-Bit Magnitude 
Comparator by cascading 1-Bit Comparator.

The output waveforms of ECRL and PFAL are quite 
similar under same input conditions. Most often there is a 
requirement to compare two 4-bit, 8-bit or higher bit binary 
numbers. It is worthwhile to look at a 1-bit comparator with 
inputs and outputs which can be used to cascade several 
of these to configure multiple-bit comparators. Fig.8 and 
Fig.9 shows simulated waveforms of ECRL & PFAL 4-bit 
Magnitude comparator. Here the power clock has been 
indicated by PCK.

Fig.8: Simulated Waveform of the ECRL 4-Bit Magnitude           
Comparator by Cascading 1-Bit Complex Comparator

Fig.9: Simulated Waveform of the PFAL  4-Bit Magnitude          
Comparator by Cascading 1-Bit Complex Comparator

V. POWER CONSUMPTION ANALYSIS
AND COMPARISON

Estimation of power consumptions is carried out at 0.3µm 
technology keeping the W/L ratio of the PMOS and NMOS 
are same and L=0.3µm and W=0.75µm is considered. 
The simulation has been done in NI-Multisim with load 
capacitance of 100fF at a frequency of 900Mhz. ECRL 
and PFAL logics are investigated against the conventional 
CMOS  logic.

The graphical power analysis   results of Cascadable 1-Bit 
Complex Comparator  is shown in Fig.10. Table 2 and Table 
3 Compares performances of PFAL, ECRL and traditional 
CMOS at two frequencies viz. 600mhz & 900Mhz in 
terms  of  transistor count, power dissipations and area 
consumption respectively [5] [6] [7].

Power dissipations of the circuits at different frequencies 
with same value of  VDD=3.3V & CL=100fF are shown in 
Table 2 and Table 3.

Table 2:   At  600MHZ:

CIRCUIT
Cascadable Complex 1-Bit 

Comparator

PFAL ECRL CMOS

Transistor count 42 36 32
Total power 

dissipation (µW) 1.9 2.3 7.45

Area per chip (µm2) 9.45 8.1 7.2
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Table 3:   At  900MHZ:

CIRCUIT
Cascadable Complex 1-Bit Comparator

PFAL ECRL CMOS

Transistor count 42 36 32
Total power 

dissipation (µW) 3.2 3.7 11.45

Area per chip 
(µm2) 9.45 8.1 7.2

Fig.10: Simulated Power plot of  Cascadable  1-Bit
Complex Comparator

VI. CONCLUSION

In this paper  we have presented  Adiabatic N-Bit Magnitude 
Comparator circuits using PFAL and ECRL techniques 
which have better performance among the literature. For 
simplicity, here 4-Bit magnitude comparator is configured 
adiabatically by cascading four stages of 1-bit cascadable 
complex comparator. This shows that any multiple-bit could 
be compared adiabatically in the same pattern as desired. The 
circuit diagram and simulated output waveforms of  both   
approaches are shown and the power dissipations of the 
circuit are evaluated at various frequencies and compared 
with the counterpart conventional CMOS circuits.  From 
the above observations we have concluded that the design 
based on adiabatic principle gives superior performance 
when compared to traditional methods in terms of power 
even though their total area and transistor count is more in 
some circuits.
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ON SOME UNIFIED INTEGRALS
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ABSTRACT

In this paper, a number of integrals of various types involving 
the hypergeometric function, the H-function, the I-function 
are evaluated. First, we have evaluated certain finite integrals 
involving the hypergeometric function and H-function and 
then a few integrals involving product of the I-function 
with exponential function, hypergeometric function and 
H-function are evaluated. A number of particular cases of 
these integrals have also been recorded.

Key words: - Hypergeometric function; H-function; 
I-function.

I. NTRODUCTION

The Gaussian hypergeometric function is of fundamental 
importance in the theory of special functions. The 
importance of this function lies in the fact that almost all 
of the commonly used functions of applicable mathematics, 
mathematical physics, engineering and mathematical biology 
are expressible as its special cases. The series

						    
					           ,	       (1)

where           is the Pochhammer symbol defined by

						           ,

is called the Gauss’s hypergeometric series after the famous 
German mathematician Carl Friedrich Gauss (1777-1855) 
who in the year 1812 introduced this series. It is represented 
by the symbol                   and is called the Gauss’s 
hypergeometric function also.

In 1961, Charles Fox [2] introduced a function which is 
more general than the Meijer’s G-function and this function 
is well known in the literature of special functions as Fox’s 
H-function or simply the H-function. This function is defined 
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and represented by means of the following Mellin-Barnes 

type contour integral: 
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where, for convenience, 
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and L is a suitable contour of the Mellin-Barnes type which 

runs from i� � �  to i� � � (�  is real), separating the poles 

of ( )j jb f s� � , 1, ,j m� m,  from those of 

(1 )j ja e s� � � , 1, ,j n� n, . An empty product is 

interpreted as unity. The integers , , ,m n p q  satisfy the 

inequalities 0 , 0n p m q� � � � , the coefficients 

( 1, , ),je j p� , ),p,  ( 1, , )jf j q� , )q, are positive real 

numbers, and the complex parameters 

( 1, , ), ( 1, , )j ja j p b j q� �, ), ( 1, , )j j q, ), ( 1, ,, 1, ,j, ),),) () (  are so constrained that 

no poles of the integrand coincide. Owing to the popularity of 

the special functions, those are defined in (1) and (2) (c.f. [4], 

[3] and [6]), details regarding these are avoided. 

The I-function, which is more general than the Fox's H-

function, defined by V.P. Saxena [5], by means of the 

following Mellin-Barnes type contour integral:  
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, ( 1, , ), ,i ip q i r m n� )r m n, ), ,),  are integers satisfying 

0 , 0 ; , , ,i i j j ji jin p m q � � � �� � � �  are real and 

positive and , , ,j j ji jia b a b  are complex numbers. L is a 

suitable contour of the Mellin-Barnes type running from 

i� � �  to i� � �  (� is real) in the complex � -plane. 

Details regarding existence conditions and various parametric 

restrictions of I-function, we may refer [5]. 

For 1r � , (2) reduces to the Fox's H-function 
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II. REQUIRED RESULTS 

We shall require the following results in the sequel: 

(i)  [1, p. 399, eq. (4)] 

For Re( ) 0, Re( ) 0� �� � and 

Re( ) 0� � � �� � � �                         

1

1 1

2 1

0

(1 ) ( , ; ; )x x F x dx� � � � �� ���   

( ) ( ) ( )

( ) ( )

� � � � � �
� � � � � �

� � � � � �
�
� � � � � �

         (4) 

(ii)  [4, p. 56, eq. (1)] 
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(iii)  Mellin transform of the H-function [6, p. 15, eq. (2.4.1)] 
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III. INTEGRALS INVOLVING 

THE HYERGEOMETRIC FUNCTION 

AND H-FUNCTION 
 
In this section, we have evaluated certain finite integrals 

involving the hypergeometric function and H-function.  
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The conditions of validity of the integral in (8) are as follows: 
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together with the conditions (i) and (ii) of (8) and ( )f k is 

given in (9). 

Fifth Integral 
1

1 1

5 2 1

0

(1 ) ( , ; ; )x zI x x e F a x� � �� � �� � �� ��  

1,,

,

1,

( , )
(1 )

( , )

j j pm n
p q

j j q

a e
H yx x dx

b f
� ��

� �

 �� �

� �� �
 

  =

0 0

( )
( )!

u kn
z

u k

ze f k
u k

�

�

	 	 �� �  

1, 1

2, 1

(1 , ) ,

( , ) ,

m n
p q

k
H y

k u
� � �

� �
� �
� �

� ��

 � � ��

1,

1,

( , ) , ( ( 1) , )

( , )

j j p

j j q

a e k u

b f

� � � � �� � � � � �
�
��

, 

    (12) 

Provided  0, 0� �� �  such that 0� �� �  and 

� �( 1)

1
Re( ) max Re 0j

j

a
ej n

� � �

� �
� �� �
� �

 

where, 0, 0� �� � , such that 0� �� �  and 

� �( 1)

1
Re( ) max Re 0j

j

a
ej n

� � �

� �
� �� �
� �

 

� �
1

Re( ) min Re 0j

j

b
fj m

� �
� �

� �� �
� �

 

together with the conditions (i) and (ii) of (8) and ( )f k is 

given in (9). 
 

Proof of (7):   
1

1 1 (1 )

1 2 1

0

(1 ) ( , ; ; )z x zI e x x e F x dx� � � � �� � � �
 ��      

1

1 1

00

(1 )
(1 )

!

r r
z

r

x ze x x
r

� �
�

� � �




�

 � 	�    

         
2 1( , ; ; )F x dx� � ��      

Now changing the order of integration and summation, we 

obtain 
1

1 1

1

0 0

(1 )
!

r
z r

r

zI e x x
r

� �
�

� � � �




�

 ��

�
	 �

2 1( , ; ; )F x dx� � �
�

� �
�

 

Evaluating the integral with the help of (4), we get

1

0

( ) ( ) ( )

! ( ) ( )

r
z

r

z r rI e
r r r

� � � � � �
� � � � � �

�
�




� � � � � � � �



� � � � � � � �	  

( ) ( ) ( )

( ) ( )

ze � � � � � �
� � � � � �

� �� � � � � �

 � � � � � � ��

( ) ( 1) ( 1)

( 1) ( 1)
z� � � � � �

� � � � � �
� � � � � � � �

�
� � � � � � � �

2( ) ( 2) ( 2)

( 2) ( 2) 2!

z� � � � � �
� � � � � �

�� � � � � � � �
� � �� � � � � � � � �

�
�
��

�
��
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( ) ( ) ( )
1

( ) ( )

ze � � � � � �
� � � � � �

� �� � � � � �
� ��� � � � � � �

( ) ( 1)

( )( ) ( )
z� � � � � � �

� � � � � � � � �
� � � �

�
� � � � � �

2( )( 1)

( 1)( 1) 2!

z� � � � � � � �
� � � � � �

�� � � � � � �
� �� � � � � � �

�
�
��

�
��  

( ) ( ) ( )

( ) ( )

ze � � � � � �
� � � � � �

� � � � � � �
�

� � � � � �

2 2( , ; , ; )F z� � � � � � � � � � �� � � � � � � �  

Proof of (8): 
1

1 1 (1 )

2 2 1

0

(1 ) ( , ; ; )z x zI e x x e F a x� � �� � �� � � �� ��          

1,,

,

1,

( , )
(1 )

( , )

j j pm n
p q

j j q

a e
H yx x dx

b f
� �� �

� �� �
� �

 

Now we replace 
(1 )x ze �

 by 

0

(1 )

!

u u

u

x z
u

�




��  and express the 

hypergeometric function and the H function with the help of 

(1) and (2) respectively, to get 
1

1 1

2

00

(1 )
(1 )

!

u u
z

u

x zI e x x
u

� �
�

� � �




�

 � ��  

0

( ) ( )

( ) !

k k
k k

k k

a x
k

�� �
�

�




��  

1
( ) (1 )

2

s s s

L

s y x x ds dx
i

� ��



� ��  

1

1 1

0 00

( ) ( )
(1 )

( ) !

k k
z k k

u k k

a xe x x
k

�
� � � �

�

� �
� � �


 



 � � ��      

(1 ) 1
( ) (1 )

! 2

u u
s s s

L

x z s y x x ds dx
u i

� ��



�
� ��  

By the use of (5), the above result reduces to 
1

1 1

2

0 00

( ) ( )
(1 )

( ) !

k kn
z k k

u k k

a xI e x x
k

�
� � � �

�

�
� � �

� �

� � � ��
(1 ) 1

( ) (1 )
( )! 2

u k u k
s s s

L

x z s y x x ds dx
u k i

� ��
�

� ��
� �

� �
Interchanging the order of integration and summation, we 

obtain 

2

0 0

1
( ) ( )

( )! 2

u kn
z s

u k L

zI e f k s y
u k i

�
�

��
�

� �

�
�� � �  

        

1

1 1

0

(1 )k s u k sx x dx ds� � � � �� � � � � � �� �
� �� �
� �
�  

 

0 0

( )
( )!

u kn
z

u k

ze f k
u k

��
�

� �

�
�� �  

1 ( ) ( )
( )

2 ( ( 1) ( ) )

s

L

k s u k s
s y ds

i k u s
� � � � �



� � � � � �

� � � � � � �
�

� � � � � � ��  

where,  
( ) ( )

( )
( ) !

k
k k

k

af k
k


 	
�

� . 

Finally, interpreting the contour integral by virtue of (2), we 

obtain 

, 2

2 2, 1

0 0

 ( )
( )!

u kn
z m n

p q
u k

zI e f k H
u k

��
� �

� �
� �

�
�� �  

1,

1,

(1 , ), (1 , ), ( , )

( , ) , (1 ( 1) , )

j j p

j j q

k k u a e
y
b f k u

� � � � �

� � � � �

� � � � � � �
� �

� � � � � �� �� �
 

The integrals (10) to (14) can be proved on lines similar to 

those of integral (8). 

 
 

IV. INTEGRALS INVOLVING I-FUNCTION 
 

In this section, we have evaluated certain integrals involving 

product of the I-function with exponential function, 

hypergeometric function and H-function. 

 
Eighth Integral

� �1 1

8 1

0

( ) , ; ; ( )

t
x zI x t x e F a x t x� � � �
 	 �� � �� � ��

1, 1,,

, :

1, 1,

( , ) ;( , )
( )

( , ) ;( , )

i

i i

i

j j n ji ji n pm n
p q r

j j m ji ji m q

a a
I yx t x dx

b b
� �

� �

� �
�

�

� �
� �� �

� �� �

1 ( 1)

0 0

( )
( )!

u kn
z t k u

u k

ze t f k t
u k

� � � �
��

� � � � � �


 




�� �

, 2

2, 1:

1, 1,

(1 , ),

( , ) ;( , ) ,i i
i

m n
p q r

j j m ji ji m q

k
I y t

b b
� �

� � �
� �

� �
� �

�

� ��
� �

�
                                  

� 

� 


1, 1,1 ( 1) , , ( , ) ; ( , )
,

1 ( 1) ,

ij j n ji ji n pk u a a

k u

� � � � �

� � � � � �
�� � � � �

�
� � � � � � � ��

                        

           (15) 

where, 

( ) ( )
( )

( ) !

k
k k

k

af k
k

� �
	


 ,        (16) 

Provided 

(i) 0, 0� �� �  (not both zero simultaneously), 
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(ii) and� �  are non-negative integers such that 1� �� �  

(iii)
1

0 , 0 ; arg ,
2

i i iA B y A �� � �   

1, , ;i r� � , ;, where

1 1 1 1

i ip qn m

i j ji j ji
j j n j j m

A � � � �
� � � � � �

� � � �� � � �  

1 1

1
( )

2

i iq p

i i i ji ji
j j

B p q b a
� �

� � � �� �  

(iv) � �
1

Re( ) min Re 0,j

j

b

j m �� �

 


� �� �

 	

 

� �
1

Re( ) min Re 0j

j

b

j m �� �
� �

� �� �
� �

. 

Ninth Integral                        

� �1 1

9 2 1

0

( ) , ; ; ( )

t
x zI x t x e F a x t x� � � �� � �� � �
 � ��  

1, 1,,

, :

1, 1,

( , ) ;( , )
( )

( , ) ;( , )

i

i i

i

j j n ji ji n pm n
p q r

j j m ji ji m q

a a
I yx t x dx

b b
� �

� �

� �
�� �

�

� �

 �	 �

	 �� �

1 ( 1)

0 0

( )
( )!

u kn
z t k u

u k

ze t f k t
u k

� � � �
��

� � � � � �

� �

�
�� �             

1,2,

1, 2:

( , ) ;

( , ),i i

j j nm n
p q r

a
I y t

k
� � �

� � �
� � �
� �

�

 	 ��

 

� �1,

1, 1,

( , ) , ( 1) ,
,

( ( 1) , ) , ( , ) ; ( , )

i

i

ji ji n p

j j m ji ji m q

a k u

k u b b

� � � � � � �

� � � � �
�

�

� � � � � � �
�

� � � ��
  

(17) 

Provided 

� �( 1)

1
Re( ) max Re 0,j

j

a

j n
�� � �

� �
� �� �� �  

� �( 1)

1
Re( ) max Re 0,j

j

a

j n
�� � �

� �
� �� �� �  

along with the sets of conditions (i) to (iii) given with 
8I  

and ( )f k  is given by (16). 

Tenth Integral 

� �1 1

10 2 1

0

( ) , ; ; ( )

t
x zI x t x e F a x t x� � � �� � �� � �
 � ��  

1, 1,,

, :

1, 1,

( , ) ;( , )
( )

( , ) ;( , )

i

i i

i

j j n ji ji n pm n
p q r

j j m ji ji m q
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I yx t x dx

b b
� �

� �

� �
��

�

� �

 �	 �

	 �� �
 

1 ( 1)

0 0

( )
( )!

u kn
z t k u

u k

ze t f k t
u k

� � � �
��

� � � � � �

� �

�
�� �  

1,1, 1

1, 2:

1,

(1 , ) , ( , ) ;

( ( 1) , ) , ( , ) ;i i

j j nm n
p q r

j j m

k a
I y t

k u b
� �

� � � �

� � � �
� � �
� �

� ��
	 � � ��

� �
1,

1,

( , )
,

( , ) , 1 ( 1) ,

i

i

ji ji n p

ji ji m q

a

b k u

�

� � � � � � �
�

� � � � � � � �

�
�
��

  

    (18)     

Provided 0, 0� �� �  such that 0� �� � , 

� �
1

Re( ) min Re 0,j

j

b

j m �� �
� �

� �� �
� �

 

� �( 1)

1
Re( ) max Re 0,j

j

a

j n
�� � �

� �
� �� �� �  

along with the sets of conditions (i) to (iii) given with 
8I  and 

( )f k  is given by (16). 

 
Eleventh Integral  

� �1 1

11 2 1

0

( ) , ; ; ( )

t
x zI x t x e F a x t x� � � �� � �� � �
 � ��           

1, 1,,

, :

1, 1,

( , ) ;( , )
( )

( , ) ;( , )

i

i i

i

j j n ji ji n pm n
p q r

j j m ji ji m q

a a
I yx t x dx

b b
� �

� �

� �
��

�

� �

 �	 �

	 �� �

1 ( 1)

0 0

( )
( )!

u kn
z t k u

u k

ze t f k t
u k

� � � �
��

� � � � � �

� �

�
�� �   

1,1, 1

2, 1:

1,

(1 , ) , ( , ) ;

( ( 1) , ) , ( , ) ;i i

j j nm n
p q r

j j m

k a
I y t

k u b
� �

� � � �

� � � �
� � �
� �

� ��

 	 � � ��

                        

� �1,

1,

( , ) , ( 1) ,
,

( , )

i

i

ji ji n p

ji ji m q

a k u

b

� � � � � � �

�
�

�

� � � � � � �
�
��

                              

    (19) 

Provided 0, 0� �� �  such that 0� �� � , 

� �( 1)

1
Re( ) max Re 0,j

j

a

j n
�� � �

� �
� �� �� �  

� �
1

Re( ) min Re 0,j

j

b

j m �� �
� �

� �� �
� �

 

along with the sets of conditions (i) to (iii) given with 
8I  and 

( )f k  is given by (16). 

 
Twelfth Integral  

� �1 1

12 2 1

0

( ) , ; ; ( )

t
x zI x t x e F a x t x� � � �� � �� � �
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1, 1,,

, :

1, 1,

( , ) ;( , )
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( , ) ;( , )
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� �� �
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� �

� � � �

� � � �
� � � �
� �

� � � �
�

�

�
�
�

� �1,

1,
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,

( , )

i

i
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ji ji m q

a k u
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� � � � � � �

�
�

�

� � � � � � �
�
��

 

    (20)  

Provided 0, 0� �� 
  such that 0� �� 
 , 

� �
1

Re( ) min Re 0,j

j

b

j m �� �
� �

� �� �
� �  


 	( 1)

1
Re( ) max Re 0,j

j

a

j n
�� � �

� �
� �� �� �  

along with the sets of conditions (i) to (iii) given with 
8I  and 

( )f k  is given by (16). 

 
Thirteenth Integral  

� �1 1

13 2 1

0
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t
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�
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Provided 0, 0� �� 
  such that 0� �� � , 

� �( 1)

1
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a
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	 �
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j
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� �� 
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along with the sets of conditions (i) to (iii) given with 
8I  

and ( )f k  is given by (16). 

 
 
 

Fourteenth Integral  
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i

i
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a
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�

�
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�� � � � �
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,     (22) 

where, 

 
( ) ( )
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( ) !

k
k k

k

af k
k

� �
�

�         (23) 

Provided 

(i) 
1

0, arg
2

z
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where,                         
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Now by the use of (5), the above result reduces to 
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Interchanging the order of integration and summation, we 
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where ( )f k  is given in (16). 

On substituting x t s�  in the inner x-integral, the above 
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The integrals (17) to (21) can be proved on lines similar to 

those of integral (15). 
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where 

( )f k  is given by (23). 

Now we use the Mellin transform of H-function by virtue of 

(5), so that 

14

0 0

( )
( )!

u kn

u k

aI f k
u k

��

� �

�
�� �

� �( 1)1
( )

2

k u

L

z w
i

� � ���� �
�

� � � � �� �  

� �

� �
1

1

( ( 1) )

1 ( ( 1) )

m

j j
j

q

j j
j m

d k u

d k u

� � � ��

� � � ��

�

� �

� � � � � �

�
� � � � � � �

�

�
 

� �

� �
1

1

1 ( ( 1) )

( ( 1) )

n

j j
j
p

j j
j n

c k u
d

c k u

� � � ��
�

� � � ��

�

� �

� � � � � � �

�
� � � � � �

�

�
 

( 1)

0 0

1
( ) ( )

( )! 2

u kn
k u

u k L

a
w f k w

u k i
� � � �

�

��
� � � �

� �

�
�

� � �   

� �

� �
1

1

( ( 1) ) )

1 ( ( 1) ) )

m

j j j
j

q

j j j
j m

d k u

d k u

� � � �� �

� � � �� �

�

� �

� � � � � �

�
� � � � � � �

�

�
       

� �

� �
1

1

1 ( ( 1) ) )

( ( 1) ) )

n

j j j
j
p

j j j
j n

c k u

c k u

� � � �� �

� � � �� �

�

� �

� � � � � � �

�
� � � � � �

�

�
      

z w d� �� ���     

 

Finally, interpreting the contour integral by virtue of (3), 
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2.5 Particular Cases: 
(i)  Integrals (8), (10), (11), (12), (13) and (14) are the 

particular cases of the integrals (15), (17), (18), (19), (20) and 

International Journal on Current Science & Technology 
Vol - 1 l No- 2 l July-December’2013
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(15), (17), (18), (19), (20) and (21), several other interesting 
new and known results may be obtained.
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(21), respectively, on putting 1, 1, and 0r t �� � �  in 

them. 

(iv) Putting 0a �  in (22), the exponential function 
a xe  and 

the hypergeometric function reduces to unity and 

consequently it leads to a result by V.P. Saxena [5, p. 66, eq. 

(4.5.1)]:  
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MINTERMS GENERATIONS ALGORITHM USING 
WEIGHTED SUM METHOD

ABSTRACT

The paper presents an exact algorithms for minterms 
generation. These algorithms are exact in the sense that they 
guarantee the minimum number of minterms terms in the final 
solution. Using this algorithm minterms may be generating 
from any minimized sum of product terms of multiple input 
variables. A flow chart is prepared to generate minterms 
called Minterms Generator. The Minterms Generator able 
to generate minterms from any number minimized sum 
of product terms of any number of input variables. This 
algorithm easily implement in computer programming. 
The completeness, consistency, and finite convergence of 
the algorithm are proven. Representative results from the 
computer program implementation of the algorithm are 
presented in this paper.

Keywords - Algorithm; minterms, minimization; Boolean 
function; weighted sum.

I. NTRODUCTION

The designs of digital systems are mainly determination 
of Boolean expression from the given information and to 
implement by using suitable gates. The K-map for n numbers 
of input variables consist of 2n squares because n variables 
can be combined to from 2n minterms [1].  As the number of 
variables increases, the excessive number of squares prevents 
a reasonable selection of adjacent squares. Disadvantages of 
the map are that it is essentially a trial and error procedure, 
which relies on the ability of the user to recognize certain 
patterns. It is very effective for the minimization of 
expression with up to 4 inputs variables and it complexity 
increase as no of input variable increase. It depends on the 
ability to visually identify prime applicants and select a set 
of prime implicants that cover all minterms [2]. This is not 
a direct algorithm to be implemented in a computer. An 
algebraic approach based primarily on successive expansion 
to generate all the prime implicants of a Boolean function 
utilizing the maxterm-type expression was first proposed by 
Nelson [3-4]. This basic idea of Nelson was subsequently 

utilized by Das and Choudhury in developing a tabular 
method for a more efficient generation of all the prime 
implicants of a Boolean function starting from the maxterm 
type expression represented in decimal mode [5]. For 
handling larger inputs a programmable method McCluskey 
proposed an algorithmic based technique for simplifying 
Boolean logic functions. These problems can be described 
by specifying the fundamental products to be included in the 
function where to minterms are combined together if there 
binary representation differs by a single bit replaced by (-). 
In addition, a modification of this basic technique has been 
developed which permits the direct generation of only the 
essential prime implicants [6]. Standard ways to represent 
any Boolean logics are “Sum of Products” (SOP). 

II. PRELIMINARIES

In this section, present the basic notation and definitions used 
in the sequel. Some of the definitions below have been taken 
from [7].
	
	 Completely specified input variables defined as  
	 which take any values 0 or 1 for all the un-minimized  
	 input variables.
 
	 Incompletely specified input variables, which takes  
	 any values 0, 1 or the output may also take don’t care  
	 values (–) for some of the un-minimized input variables.
 
	 Weight i.e. power of 2 depends on the position of the  
	 input variables.  As for example Bi indicate the input  
	 variable at i-th position so weight of  Bi is 2i.
 
	 Weighted sum is the addition of the weight values  
	 according their bit position of the variable.  
	
	 P Matrix is a representation technique of SOP terms of  
	 minimized input variables. 

Let, an n input combinational circuit represent by function
f (Bn,B(n-1),B(n-2),. . . . . .B3,B2,B1 ).  
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After minimization, f (Bn,Bn-1,Bn-2,. . . . . .B3,B2,B1 ) = Bn-1 B̅2 
B1+ Bn B̅n-1 Bi B̅2 B̅1 .

Completely specified variable inputs are B(n-1),B2 and B1 
because in the both SOP terms they are always either 0 or 
1 no don’t care values (–).  Rests of the variables inputs are 
incompletely specified.  P matrix representation of the above 
facts,

II. RULE FOR MINTERMS GENERATIONS

In general, if numbers of un-minimized input variable are n, 
after minimization input variable are m, then the numbers of 
minterms required for minimization from n input variable to 
m input variable are 2(n-m)  because (n-m) inputs must be take 
all possible combination of binary value. Let an e.g. of  P1 
matrix, here x  indicate either 0 or 1 fixed value so, Bn, B2 
and B1 these three inputs are completely specified variable 
inputs, rest (n-3) variables take both the combination of 0 
and 1.

So, possible combinations of incompletely specified input 
variables are 2(n-3) and their weighted sum generate minterms.
Let, mi represent minterms. Where, r = 0,1,2, ... 2(n-m).

III. MINTERMS GENERATOR

A Flowchart for Minterms Generation, called it Minterms 
Generator (Fig 1).
Here, m0 is lowest weighted value of minterms and W 
positional weight of the incompletely specified input 
variables in increasing way.
Let a 8 input system describe by SOP form 
f(A,B,C,D,E,F,G,H)=AB’ CD+A’ DEG’+BF’ GH. 

P matrix representation as below,

For 1st row constant inputs are A, B, C and D. Lowest 
significant variable input is H. Here m1,0=128+0+32+16=176.

Next Minterms generate by changing the value of H from 
0 to 1 keeping all other higher incompletely specified input 
are 0. Weighted value of H is W= 20=1. Minterms increase 
up to 1st position m1,1=1+176=177. For G = 1, all higher 
incompletely specified input are 0 and H can take two vales 
0 and 1. Since only H is lower variable are 2 so only two 
minterms generate m2 and m3 . Weighted value of G is 
W= 21=2. TABLE I represent the generate minterms keeping 
all variable except H.

For F, higher incompletely specified input is 0. Lower 
incompletely specified variable inputs G and H can take all 
possible combination of 0 and 1. Since possible combination 
are 2n where n = no of lower variable input i.e. 4. So, only 
84minterms are generates from  m1,4 to m1,7 . Weighted value 
of  F is W= 22=4. TABLE II represent the generate minterms 
keeping all variable except G and H.

For E, no higher incompletely specified variable inputs 
present. Lower incompletely specified variable inputs 
F, G and H can take all possible combination of 0 and 1. 
Since possible combination are 23=8. So, only 8 minterms 
are generates from m1,8 to m1,15 . Weighted value of E is 
W= 23=8. TABLE V represent the generate minterms 
keeping all variable except F, G and H.

TABLE III represent the generate minterms keeping all 
variable except F, G and H.

So, generated minterms for 1st row are 176,177,178, 179,18
0,181,182,183,184,185,186,187,188,189,190 and 191.
For 2nd row constant inputs are A, D, E and G. Lowest 
significant variable input is H. Here m2,0=0+16+8+0=24. 
Next Minterms generate by changing the value of H from 0 
to 1 keeping all other higher variable inputs are 0. Weighted 
value of H is W= 20=1. Minterms increase up to 1 position 
m2,1=1+24=25.  

For F = 1, all higher variable inputs are 0 and H can take 
two vales 0 and 1. Since only H is lower variable input and 
possible combination are 2 so only two minterms generate  
m2,2 and m2,3. Weighted value of G is W= 22=4. TABLE IV 
represent the generate minterms keeping all variable except 
H for 2nd row of inputs.

1 0 1 1
0 1 1 0

1 0 1 1

A BC D E F G H

P

 
 − − − − =
 − − − −
 − − − − 

P 252
International Journal on Current Science & Technology 
Vol - 1 l No- 2 l July-December’2013



Fig-1: Flow chart for generate minterms.

Table I. Minterm Generation  Table 
By Keeping H Variable

Value of Variable Inputs
Generated Minterms

H Decimal Value

0 0 m1,2= 2+ m1,0=178
1 1 m1,3= 2+ m1,1=179

Table II. Minterm Generation  Table  
By Keeping G And H Variable

Value of Variable Inputs
Generated Minterms

G H Decimal Value

0 0 0 m1,4= 4+ m1,0=180

0 1 1 m1,5= 4+ m1,1=181

i = 0, r = 0

Insert W

j = 0

Noi 

Yes
Stopi = i+1

mi  = mj + W

j = j+1

i < 2r
Yes

r = r +1

Insert m0

Start 1 0 2 m1,6= 4+ m1,2=182

1 1 3 m1,7= 4+ m1,3=183

Table III. Minterm Generation  Table
By Keeping F,G And H Variable

Value of Variable Inputs
Generated Minterms

F G H Decimal Value

0 0 0 0 m1,8=8+ m1,0=184

0 0 1 1 m1,9=8+ m1,1=185

0 1 0 2 m1,10=8+ m1,2=186

0 1 1 3 m1,11= 8+ m1,3=187

1 0 0 4 m1,12= 8+ m1,4=188

1 0 1 5 m1,13= 8+ m1,5=189

1 1 0 6 m1,14= 8+ m1,6=190

1 1 1 7 m1,15= 8+ m1,7=191

Table IV. Minterm Generation  Table 
By Keeping H Variable For 2Nd Row Of Input

Value of Variable Inputs
Generated Minterms

H Decimal Value

0 0 m2,2= 4+ m2,0=28

1 1 m2,3= 4+ m2,1=29

Table V. Minterm Generation  Table 
By Keeping F And H Variable

Value of Variable Inputs
Generated Minterms

F H Decimal Value

0 0 0 m2,4= 32+ m2,0=56

0 1 1 m2,5= 32+ m2,1=57

1 0 2 m2,6= 32+ m2,2=60

1 1 3 m2,7= 32+ m2,3=61

Table VI. Minterm Generation  Table  
By Keeping C,F And H Variable For 2nd Row Of Input

Value of Variable Inputs
Generated Minterms

C F H Decimal 
Value

0 0 0 0 m2,8= 64+ m2,0=88
0 0 1 1 m2,9= 64+ m2,1=89
0 1 0 2 m2,10= 64+ m2,2=92
0 1 1 3 m2,11= 64+ m2,3=93
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1 0 0 4 m2,12= 64+ m2,4=120
1 0 1 5 m2,13= 64+ m2,5=121
1 1 0 6 m2,14= 64+ m2,6=124
1 1 1 7 m2,15= 64+ m2,7=125

For C=1, higher variable inputs is 0. Lower variable inputs 
F and H can take all possible combination of 0 and 1. Since 
possible combination are 2n  where n = no of lower variable 
input i.e. 4. So, only 4 minterms are generates from  m2,4 to 
m 2,7. Weighted value of C is W= 26=32. TABLE V represent 
the generate minterms keeping all variable except F and H.

For B= 1, no higher variable inputs present. Lower variable 
inputs C, F and H can take all possible combination of 0 and 
1. Since possible combination are 23=8.So, only 8 minterms 
are generates from  m2,8 to m2,15. Weighted value of B is 
W= 27=64. TABLE VIII represent the generate minterms 
keeping all variable except C, F and H. TABLE VI represent 
the generate minterms keeping all variable except F and H.

So, generated minterms for 2nd row are 24,25,29,56,57,60,6
1,88,89,92,93, 120, 121,124 and 125. 

For 3rd row constant inputs are A, C, D and E.
For 3rd row constant inputs are B, F, G and H. Here 
m3,0=64+0+2+1=67. Next Minterms generate by changing 
the value of E from 0 to 1 keeping all other higher variable 
inputs are 0. Weighted value of E is W= 23=8. Minterms 
increase up to 1 position m3,1=8+67=75. For D = 1, all higher 
variable inputs are 0 and E can take two vales 0 and 1. Since 
only E is lower variable input and possible combination are 2 
so only two minterms generate m3,2 and m3,3. Weighted value 
of G is W= 24=16. TABLE VII represents the generated 
minterms keeping all variable except E.

For C=1, higher variable inputs is 0. Lower variable inputs 
F and H can take all possible combination of 0 and 1. Since 
possible combination are 2n  where n = no of lower variable 
input i.e. 4. So, only 4 minterms are generates from  m4 to m7. 
Weighted value of C is W= 25=32. TABLE VIII represents 
the generated minterms keeping all variable except D and E.

Table VII. Minterm Generation  Table  
By Keeping E Variable

Value of Variable Inputs
Generated Minterms

E Decimal 
Value

0 0 m3,2= 16+ m3,0=83
1 1 m3,3=16+ m3,1=91

Table VIII. Minterm Generation  Table
By Keeping D And E Variable

Value of Variable Inputs
Generated Minterms

D E Decimal Value

0 0 0   m3,4= 32+ m3,0=99

0 1 1 m3,5= 32+ m3,1=107

1 0 2 m3,6= 32+ m3,2=115

1 1 3 m3,7= 32+ m3,3=123

Table IX. Minterm Generation  Table
By Keeping C,D And E Variable

Value of Variable Inputs
Generated Minterms

C D E Decimal 
Value

0 0 0 0 m3,8= 128+ m3,0= 195
0 0 1 1 m3,9= 128+ m3,1= 203
0 1 0 2 m3,10=128+ m3,2= 211
0 1 1 3 m3,11=128+ m3,3=219
1 0 0 4 m3,12= 128+ m3,4=227
1 0 1 5 m3,13= 128+ m3,5=235
1 1 0 6 m3,14= 128+ m3,6=243
1 1 1 7 m3,15= 128+ m3,7=251

For A= 1, no higher variable inputs present. Lower variable 
inputs C, F and H can take all possible combination of 0 and 
1.
Since possible combination are 23=8. So, only 8 minterms 
are generates from  m8 to m15. Weighted value of A is W= 
27=128. TABLE IX represents the generated minterms 
keeping all variable except C, D and E.

So, generated minterms for 3rd  row are 67,75,83,91,99,107,
115,123,195,203,211,219,227,235,243 and 251. 

So, generated minterms for the P matrix are given below, 
24, 25, 28, 29, 56, 57, 60, 61, 67,75, 83, 88, 89, 91, 92, 93, 
99,107,115, 120, 121, 123, 124, 125, 176, 177, 178, 179, 
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 
191,195,203,211,219, 227,235, 243,251.
Bold and Italic terms are for row 1 under lines terms are 
generated minterms for row 2, and plain text are for row 3 for 
the P matrix. Reversely we say that minimization expression 
is  f(A,B,C,D,E,F,G,H)=AB’ CD+A’ DEG’+BF’ GH.
By using this rule minterms may be generate which may be 
use in extended and modified tabular formula [8-12].
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IV. CONCLUSION

This paper studied the condition of minimizing Boolean 
expressions and proposed an optimal method of Boolean 
function simplification using weighted sum. It can be 
effectively and easily implemented for problems having 
large numbers of input variables. Further research should be 
conducted to develop an algorithm that uses this new method. 
The proposed method may lead to easy ULSI fabrication and 
finally an attempt to use this technique on Extra Large Scale 
Integrations (ELSI).
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